И Н Т Е Г Р А Л Ь Н Ы Е    У Р А В Н Е Н И Я
о проекте
об авторе


главная

обновления
на сайте


математика

физика

Химия и
биология


технические
науки


гуманитарные
науки


компьютерная
литература


школьникам

научно-
популярные


художественная

программы

контакты
гостевая книга


сcылки




Geo Informer
Рейтинг Сайтов YandeG



Все книги и пособия вы можете скачать абсолютно бесплатно и без регистрации.

NEW. И.Г. Петровский. Лекции по теории интегральных уравнений. 1948 год. 122 стр. djvu. 1.8 Mб.
Классический труд выдающегося ученого-математика, академика И.Г.Петровского (1901-1973) основан на курсе лекций, прочитанных им в МГУ им. М.В.Ломоносова в 1946 году. В нем рассматриваются линейные интегральные уравнения, формулируются определения, примеры и типичные задачи, сводящиеся к ним, подробно дается теория интегральных уравнений Фредгольма, описываются уравнения Вольтерра и интегральные уравнения с действительными симметрическими ядрами. Рекомендуется студентам университетов - будущим математикам и физикам, а также аспирантам и специалистам.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

NEW. С.Г. Михлин. Лекции по линейныым интегральным уравнениям. 1959 год. 234 стр. djvu. 2.8 Mб.
Настоящая книга представляет собой расширенное изложение лекций, читанных автором в Ленинградском университете. Теория Фредгольма строится на основе аппроксимации (но без последующего предельного перехода) данного ядра вырожденным; такое построение, помимо его простоты, привлекательно еще тем, что оно очевидным образом связывает уравнения Фредгольма как с линейными алгебраическими системами, так и с более общими уравнениями, содержащими вполне непрерывные операторы.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Васильева А. В., Медведев Г. Н., Тихонов Н.А., Уразгильдина Т.А. Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах. 2003 год. 432 стр. djvu. 2.9 Мб.
Пособие охватывает все разделы курсов «Дифференциальные и интегральные уравнения. Вариационное исчисление». По каждой теме кратко излагаются основные теоретические сведения; приводятся решения стандартных и нестандартных задач; даются задачи с ответами для самостоятельной работы.
Для студентов вузов, обучающихся по специальностям «Физика» и «Прикладная математика».

. . . . . . . . . . . . . . . . . . . . . . . . . . . скачать

Васильева А. Б., Тихонов Н. А. Интегральные уравнения. 2002 год. 157 стр. djvu. 1.1 Мб.
Пособие знакомит с понятием интегрального уравнения, теоремой существования собственных значений и собственных функций однородного интегрального уравнения Фредгольма второго рода. Рассмотрены вопросы разложимости по собственным функциям, задача Штурма - Лиувилля, неоднородные интегральные уравнения Фредгольма второго рода, уравнения типа Вольтерра. Интегральные уравнения Фредгольма первого рода рассматриваются как некорректно поставленная задача, в связи с чем излагаются основы регуляризирующего алгоритма А. Н. Тихонова. Приводятся некоторые сведения о численных методах теории интегральных уравнений. Излагаются также некоторые вопросы теории интегро-дифференциальных уравнений. Для студентов вузов, обучающихся по специальностям "Физика" и "Прикладная математика".

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Зон Б. А. Лекции по интегральным уравнениям. 2004 год. 92 стр. djvu. 1.7 Мб.
Эти лекции по математической дисциплине читались физиком для физиков. Данное обстоятельство определяющим образом повлияло на отбор материала. С одной стороны, физикам необходимо получать решения уравнений в таком виде, чтобы их можно было изобразить графически, найти численные значения там, где требуется. С другой стороны, линейные интегральные уравнения являются прекрасным примером общей теории линейных операторов в гильбертовом пространстве, а эта теория является математической основой квантовой механики. Поэтому и теория интегральных уравнений излагалась именно под таким углом зрения.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

М.Л. Краснов. Интегральные уравнения. Введение в теорию. Уч. пособие. 1975 год. 303 стр. djvu. 4.3 Мб.
Книга предназначена для первоначального ознакомления с основными фактами теории интегральных уравнений. Автор старался избегать громоздких доказательств и утомительных выкладок. Изложение ряда вопросов строится на основе общих предложений функционального анализа, что делает рассуждения более прозрачными. Книга преследует двоякую цель: познакомить инженеров и студентов втузов с началами функционального анализа и на их основе— с некоторыми фактами из теории интегральных уравнений.
Для чтения книги достаточно знания математики в объеме первых двух курсов втуза.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Краснов М. Л. Интегральные уравнения. 1968 год. 192 стр. djvu. 1.6 Мб.
Книга содержит 322 задачи (с ответами) по основным вопросам курса интегральных уравнений. Состоит из трех глав: интегральные уравнения Вольтерра, интегральные уравнения Фредгольма, приближенные методы. В каждом параграфе приводится сводка основных результатов и формул и даются подробно разрбравные типоыые примеры; в приложении—сводка основных методов решения интегральных уравнений. Книга предназначается для студентов втузов и инженеров.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Кулиев В.Д. Сингулярные краевые задачи. 2005 год. 720стр. djvu. 4.4 Mб.
В монографии систематически изложены результаты, полученные автором в области теории интегральных уравнений и теории краевых задач аналитических функций. Определенная часть книги посвящена приложениям этих теорий к различным классам задач механики хрупкого и усталостного разрушения. Полученные при этом результаты позволили автору, в частности, предложить более адекватный подход к проблеме разрушения п (п > 1)-слойных упругих сред с трещиной. Автором предложен также метод решения канонических сингулярных задач теории упругости кусочно однородных сред. С помощью этого метода решен ряд задач и получены важные результаты в теории упругости и механике разрушения. Для студентов старших курсов механико-математических факультетов и факультетов прикладной математики университетов, а также инженеров-исследователей, аспирантов и научных сотрудников, работающих в области прикладной математики и механики.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. 1995 год. 521 стр. djvu. 9,9 Мб.
Даны элементы теории решения сингулярных интегральных уравнений в классе абсолютно интегрируемых и неинтегрируемых функций, а также теории потенциала простого и двойного слоев для уравнения Гельмгольца. На основе этих результатов дано сведение широкого круга краевых задач для уравнений Лапласа и Гельмгольца, а также задач аэродинамики, электротехники и теории упругости к краевым сингулярным или гиперсингулярным интегральным уравнениям. Исследованы некоторые свойства этих уравнений. Для сингулярных интегралов и сингулярных интегральных уравнений приведены методы вычислений и численного решения (типа метода дискретных вихрей и интерполяционного типа) как в классе абсолютно интегрируемых, так и в классе неинтегрируемых функций. На основе этих результатов было дано математическое обоснование метода дискретных вихрей численного решения задач аэродинамики. Даны примеры вычислений, приведено построение дискретных математических моделей для широкого круга задач: стационарных и нестационарных, линейных и нелинейных, плоских и пространственных задач аэродинамики, включая обтекание плохообтекаемых тел (т.е. тел, имеющих острые кромки, углы). Кроме того, построены дискретные математические модели также и для некоторых плоских задач теории упругости и электростатики, которые могут служить основой численного эксперимента в этих прикладных областях. Приведены результаты расчетов конкретных задач.
Для специалистов по численному эксперименту в аэродинамике, теории упругости, дифракции волн, а также математиков, занимающихся теорией и численными методами в сингулярных интегральных уравнениях. Может быть полезна аспирантам и студентам ВУЗов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Лизоркин П.И. Курс дифференциальных и интегральных уравнений с дополнительными главами анализа. 1981 год. 384 стр. djvu. 6.2 Мб.
Материал в книге освещается с привлечением идей и методов функционального анализа. С этой целью в нее включены главы, посвященные функциональным пространствам, анализу Фурье и первоначальным сведениям по теории операторов.
Для студентов инженерно-технических и физико-технических специальностей вузов с повышенной математической подготовкой

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

У.В. Ловитт. Линейные интегральные уравнения. 2-е изд. 1957 год. 267 стр. 2.3 Мб.
В книге дано изложение классической общей теории линейных интегральных уравнений и целого ряда ее приложений к дифференциальным уравнениям, вариационному исчислению и некоторым задачам математической физики. В настоящем издании в книгу включено дополнение «О росте собственных значений однородных интегральных уравнений», написанное чл.-корр. АН СССР А. О. Гельфондом.
Книга представляет интерес для студентов, аспирантов и преподавателей математических дисциплин в вузах.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

< Ф. Трикоми. Интегральные уравнения. 1960 год.301 стр. djvu. 2.9 Mб.
Автор - итальянский ученый Ф. Дж. Трикоми - является весьма крупным специалистом в ряде областей анализа. Он хорошо известен советскому читателю пс переводам двух его монографий: «Уравнения смешанного типа» и «Лекции по уравнениям в частных производных». Новая книга автора посвящена разделу математики, важному для приложений—к интегральным уравнениям приводится большое число задач самых разных разделов физики и техники. Книга начинается с изложения теории уравнений типа Вольтерра и Фредгольма, затем излагается теория симметричных ядер и, наконец, рассматриваются некоторые типы сингулярных и нелинейных уравнений, особо важные для приложений. Даже при изложении классических вопросов автор находит новые, за- зачастую неожиданные соображения.
Книга написана весьма просто и живо и может служить пособием для студентов и аспирантов математиков и физиков, а также для лиц инженерных специальностей. Немало интересного найдут в ней и специалисты-математики. Рекомендую

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Цлаф Л.Я. Вариационное исчисление и интегральные уравнения. 1990 год. 197 стр. djvu. 1.6 Мб.
Существующие справочники, рассчитанные на инженеров и студентов, не содержат сведений по вариационному исчислению и интегральным уравнениям. Между тем эти разделы высшей математики широко используются в исследовательской работе и вошли уже в число математических дисциплин, изучаемых в ряде технических учебных заведений. Данное справочное руководство имеет своей целью восполнить указанный пробел.
Книга содержит основные сведения из вариационного исчисления и теории интегральных уравнений и их приложений к некоторым вопросам механики и математической физики. Даются также краткие сведения о принципе максимума Л. С. Понтрягина, принципе оптимальности Р. Беллмана и др. Отдельные положения теории поясняются примерами и решениями задач. Предлагаемое издание содержит ряд дополнений по сравнению с предыдущим: необходимые и достаточные условия экстремума в разрывных задачах с подвижными концами в пространстве, сведения из теории экстремума функционалов в линейных нормированных пространствах, экстремальные свойства собственных значений и собственных функций задачи Штурма — Лиувилля и др.
Книга предназначается для инженеров, экономистов, а также для студентов и аспирантов высших технических учебных заведений.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать